Статья.Современные технологии развития числовых представлений в дошкольном возрасте
Современные технологии развития числовых представлений в дошкольном возрасте
Выбор технологий развития количественных и числовых представлений зависит от выделения ведущего в этом процессе действия (способа познания), определяющего успешность. Такой детской деятельностью является сосчитывание (счет) как основа развития у детей представлений о числе.
При выборе и разработке эффективных приемов развития у детей дошкольного возраста числовых представлений учитывается следующее.
Степень освоенности детьми 3—4-х лет свойств предметов (цвета, формы, размера); умения осуществлять группировку и упорядочение, сравнивать предметы по разным признакам, в том числе и по количеству. Эти умения обеспечивают успех в овладении счетом и переход к обобщению групп предметов по числу. В ходе упражнений по овладению счетом у детей формируется представление о числе как общем признаке как разнородных по своему составу (кукла, мишка, куб, книга), так и однородных множеств (только квадраты).
Признание положения, согласно которому счет для ребенка дошкольного возраста является жизненной потребностью; овладение процессом счета осуществляется наиболее успешно при условии постоянной стимуляции практических действий, восприятия и мышления (Сколько? Чего меньше? Как увеличить? Если добавить 2, то...) при одновременном практиковании в применении чисел и цифр.
Необходимость индивидуализации процесса развития количественных представлений. Из этого следует тенденция к конструированию технологии относительно ребенка (нужно избегать ограничений возможности познания ребенком чисел в каком-либо пределе; выравнивания уровня познания чисел разными детьми).
Положение о том, что ребенку дошкольного возраста доступна лишь степень наглядного оперирования числами. Имеют место разные подходы к определению счета: как процесс установления соответствия между элементами множества и числами натурального ряда; как выявление общего, неизменного, что характеризует несколько равночисленных множеств и др.
При упражнении детей в счете и вычислениях следует учитывать взаимосвязь этих деятельностей: действие увеличения (сложения) рассматривается как «счет вперед», а действие уменьшения (вычитания) — как «счет назад» (Г. Фройден-таль). При вычислениях, как правило, используются только однородные предметы: палочки, квадраты и т. д. Если нужно из 7 вычесть 3 (число 7 уменьшить на 3), то при наличии семи предметов можно, пользуясь умением называть числа в обратном порядке, отсчитать 3: 7, 6, 5. Затем оставшиеся предметы пересчитать или сразу назвать оставшееся количество: 4.
Педагогические технологии, используемые в процессе развития у детей количественных представлений и определяемые как проблемно-игровые, разнообразны. Это проблемные ситуации и задачи, математические игры и упражнения, литературные тексты, учебно-познавательные книги и рабочие тетради, творческие задачи и экспериментирование, моделирование и схематизация и др. Такие средства стимулируют естественную активность познания ребенком чисел и цифр, развивают познавательный интерес, воспитывают эмоционально-ценностное отношение к познанию, прививают культуру познания. Технологии используются, как правило, интегрированные, представленные сенсорными способами познания (обследование, выделение отдельностей, счет, соотнесение один к одному), практическими (сравнение, уравнивание, комплектование); игровыми (приемы «расселения» жильцов, совмещения карточек, размещения игрушек, составления ковриков и отправления поездов); речевыми (комментирование действий, результатов, использование терминологии); схематизацией (цифры, знаки, модели числового ряда).
Выбор технологии зависит от уровня освоения ребенком количественных отношений. Овладение счетом основано на представлениях о свойствах и отношениях равенства и неравенства (больше — меньше, столько же, поровну, одинаково). Следует учитывать, что счет — сложный вид деятельности для ребенка, поэтому определять возрастные сроки овладения счетом в пределе 5, 10 не следует. Нужно знать интересы ребенка, возможности, стремление его к овладению счетом, осознание необходимости пользоваться числами в детских видах деятельности. Умение считать до пяти вполне достаточно для ребенка 4—5 лет.
Выбрав технологию, взрослый начинает следующую работу с ребенком.
Оказывает помощь в определении количества игрушек, ступенек, не требуя от него особых правил, порядка пересчета, называния предметов. Считает с ним вместе, подключается к процессу в случае ошибки, помогает сказать, сколько всего предметов.
Предлагает ребенку считать при условии установления поэлементного соответствия двух множеств, периодически увеличивая (уменьшая) каждое из них на 1 элемент.
Составляет вместе с ребенком лесенки из цветных счетных палочек Кюизенера (плоских, объемных), считает ступеньки, поднимаясь и спускаясь по ним (называя при этом числа в прямом и обратном порядке).
Помогает запоминать последовательность чисел, используя для этого потешки, сказки; соотнести число и цифру.
Включается в моделирование отношений больше — меньше на 1. Пример задания: «Если к мишкам прибавить еще одного, их будет... (больше на.., 5 и т. д.). Принеси столько кубиков».
Организует игровые упражнения, помогающие ребенку понять независимость количества элементов от их расположения, комплектования, размеров и расстояния между ними.
Наблюдает за ребенком с целью выявления особенностей использования им чисел в повседневной жизни. Проблемно-игровые технологии, цель которых развитие числовых представлений детей, используются только во взаимосвязи и в контексте других видов детской деятельности: природоведческой, художественной, трудовой, театрализованной и др., что обеспечивает интеграцию и жизненность представлений детей.
Среди учебных пособий, игровых материалов, игр наиболее уместны во всех возрастных группах цветные счетные палочки Кюизенера (для детей 2—3 лет используется учебно-методическое пособие «Разноцветные полоски». Сост.: Л. М. Кларина, 3. А. Михайлова, И. Н. Чеплашкина. — СПб., 2001); блоки Дьенеша; настольно-печатные дидактические игры; головоломки; логико-математические задачи (игры); счеты (вертикальные и горизонтальные); кубики с цифрами и знаками. Эти учебные пособия и материалы наиболее эффективны при освоении дифференцировки количественных групп, группировке объектов по свойствам с выделением количественных отношений, порядковом и количественном счете, абстрагировании числа, соотнесении цифры, числа и количества, воспроизведении по числу, сравнению, измерению, увеличению и уменьшению на числах.
Преимущество в развитии числовых представлений детей дошкольного возраста принадлежит игре: индивидуальной, совместной (ребенок — взрослый, ребенок — ребенок), специально организованной (занятия Оправдано при этом использование жизненных материалов: листьев, камешков, гальки, предметов быта, монет. Играя, дети обнаруживают, что одновременно можно взять в руку то большее количество камешков, то меньшее, задумываются над таинственностью явления, положенного в основу народных игр с камешками.
Палочки Кюизенера и логические блоки Дьенеша как полифункциональные дидактические средства.
На начальном этапе освоения детьми 3—4-х лет цветных счетных палочек важно создать условия для свободной группировки их, сравнения по длине (высоте), сооружения из них построек. При обучении детей 2—4-х лет уместно использовать «Разноцветные полоски», деленные на единицы и обеспечивающие восприятие количественного значения каждой палочки в зависимости от ее цвета и длины.
Следует обратить особое внимание детей на группировку по цвету. Это ведет к пониманию того, что одинаковые по цвету палочки имеют одинаковую длину и наоборот. Палочки можно прятать и просить ребенка догадаться, какая именно палочка спрятана, подобрать недостающую, следующую в ряду. В ходе таких упражнений совершенствуются представления о свойствах и отношениях предметов, действия выбора необходимого элемента, практического сравнения по цвету, количеству; уточняется значение слов такой же, не такой, как, столько же; больше, чем; длиннее, короче; такой же длины и др. Используются приемы попарного соотнесения, увеличения и уменьшения палочек (рядов) по длине (добавить или убрать), поиска всех палочек, которые короче (длиннее), например, красной и т. д.
Цветные счетные палочки используются с целью познания ребенком чисел и цифр, действий сложения и вычитания на основе состава чисел из двух меньших, измерения и т. д. В обучении детей от 4-х лет используются типовые приемы, такие как составление лесенок, отправление поездов (составление вагонов, укладывание груза), составление ковриков разнообразными способами. Считается общепризнанным, что использование цветных счетных палочек Кюизенера дает возможность избежать ограниченности представлений ребенка о единице как об отдельном предмете. Так, при практическом освоении состава числа 5 из двух меньших чисел ребенок познает, что это может быть 1 и 4, 2 и 3. В этом случае, например, 3 выступает в качестве одного предмета (голубой палочки), но по значению соответствует трем единицам. Накладывая белые кубики (каждый из них — число 1) на голубую палочку, ребенок практически убеждается в этом.
Примеры использования палочек с целью освоения сравнения по количеству и числу, счета.
Палочки, обозначающие числа 2, 3, 4, 5, раскладываются на столе в ряд, но на некотором расстоянии друг от друга. Над каждой из них располагается соответствующая цифра.
Под каждой из палочек ребенок раскладывает такое же количество мелких предметов. Уточняется значение слов столько же, тоже два, назначение цифр, обозначающих как числовые значения палочек, так и количество отдельных предметов.
Каждая из палочек сопоставляется с соответствующим количеством белых кубиков (единиц). Уточняется количественное значение каждой из палочек (числа), ее состав из единиц. Дети упражняются в сосчитывании, соотнесении числа и цифры.
С целью познания детьми последовательности чисел натурального ряда (порядка следования — прямого и обратного), места каждого числа в этом ряду путем выделения отношений (какое из сравниваемых больше на единицу или меньше какого числа); развития умения пользоваться порядковым счетом и отличать его от количественного широко используется прием составления из палочек числовых лесенок. Лесенки составляются по-разному. Самой простой является лесенка, составленная слева направо на плоскости. По ней удобно «шагать», используя маленькую игрушку, сосчитывать ступеньки, оставлять на время игрушки на какой-либо ступеньке и находить ее на второй, пятой и т.д.; обозначать цифрами номер каждой ступеньки, спускаясь по ней, осваивать умения называть числа в обратном порядке. Например, спускаясь с четвертой на третью ступеньку, с третьей — на вторую, со второй — на первую, затем на пол, ребенок познает количественное и порядковое значения числа.
Составление двусторонней лесенки (подъем и спуск) способствует большему разнообразию в упражняемое детей. Например, при подъеме на лесенку (или спуске) зайчик остановился на 6-й ступеньке, а лиса — на 7-й. После сравнения с целью определения места каждого из них — кто выше, кто ниже — выясняется порядковый номер каждой из ступенек, на сколько ступенек надо подняться или спуститься и кому, чтобы оказаться вместе. Дети практически познают отношения между числами (больше, меньше на один), способ получения большего или меньшего на единицу числа, значение слов до, после.
Прием составления ковриков предназначен для освоения детьми состава чисел из двух меньших и действий сложения, вычитания. Коврики можно составлять свободно, выравнивая левую и правую стороны, можно по условию. Например, так, чтобы каждая полоса состояла из палочек одного цвета; из ограниченного количества палочек; из разноцветных палочек; чтобы в составе одного ряда обязательно была розовая палочка и т. д.
Дети в каждом отдельном случае объясняют способ составления числа, выделяют меньшие числа, из которых оно составлено, выражают зависимость чисел в цифрах, предлагают другие варианты. Педагог советует ребенку представить все случаи состава числа, пользоваться при этом другими учебными пособиями и материалами: карточками, игрушками, одноцветными палочками, контурами домов и др. Игра «Заселяем дома» (из пособия «На золотом крыльце»).
Упражняемость детей в выполнении различных действий с цветными счетными палочками Кюизенера помогает ребенку абстрагировать число, выделить его как таковое, что ведет к осуществлению простейших операций с числами: увеличение и уменьшение, отсчитывание и присчитывание, счет группами (парами, по 3) с целью определения общего количества, «запись» с помощью цифр, знаков сложения и вычитания процесса и результата действий с использованием карточек.
Блоки Дьенеша, представленные 48 объемными геометрическими формами или 24 плоскими, используются с целью обучения детей группировке, а позже — классификации. Дети в заданной взрослыми интересной мотивированной деятельности объединяют блоки, одинаковые по цвету; цвету и форме; форме и размеру, обозначают количество числом и цифрой.
В таких упражнениях для сравнения по количеству и числу удобно пользоваться линиями, шнурами, когда начало и конец линии обозначают пару предметов. Дети обводят линией круглые блоки, выделив их из общего количества; выделяют только 5 блоков по каким-либо свойствам; только те, которых больше, чем остальные, и «переносят» их в квадрат, но уже в виде точек.
Педагог стимулирует содержательные самостоятельные игры и упражнения детей с блоками, включающие изменения групп предметов по количеству, цвету, форме, размеру, толщине.
Резюме
Общая последовательность развития представлений о числе в период дошкольного детства состоит в переходе ребенка от восприятия множественности (много) и возникновения. Первых количественных представлений (два, один, много, мало) через овладение способами установления взаимно-однозначного соответствия (столько же, сколько; больше, чем; меньше, чем) к осмысленному счету и измерению. Постепенно осваиваемое ребенком умение считать к 4—5 годам совершенствует процесс познания им окружающего мира и его самого как активного деятеля.
Осознанное представление о числе возникает у ребенка в результате понимания им количественных отношений, чему способствует абстрагирование числа от конкретных предметов (Г. С. Костюк).
Усвоение отношений между числами основывается на осознании общей последовательности чисел от меньшего к большему, понимании и применении принципа образования чисел в практической деятельности.
По мнению психолога Н. А. Менчинской, для выполнения арифметических действий необходимо глубокое и уверенное владение рядом чисел.
Выбор и разработка технологий развития числовых представлений у детей основывается на принципе интеграции разных видов деятельности, полифункциональности и воздействия как на познавательное развитие ребенка, так и его личностное становление в целом, вхождение его в социокультурную среду.